Data Structures

Day 3: Digging in to Java
David Cooper

Entry Survey (partial responses)

m 11 people filled out the survey
m ['ll re-open the survey. What's the best time to close it?

m Let's look so far...

Questions about me

m How did you begin coding? = Which part of your research
may I join later for

m How and when did you independent study?
become interested in
Computer science? m Who was your greatest

mentor and why?
m What kind of work have you

done in CS? m What weird side hobbies do
you have, computer-related
m What are your personal or not?

research interests?
m What is your teaching style?

+
Questions about the class

m Do higher level computer science courses mainly focus on
programming too?

m When are your office hours?

m What is the most efficient way to reach you and ask questions
outside class?

m What are your expectations of us in the course?

+ °
Your Experience

m Past programming m Operating System
m Processing (9/11) Mac (45%)
[acC 0

m JavaScript (4/11)

m Java (2/11) m Windows (50%)
m Python (3/11)

m other(1/11) m Major

m Computers u Computer Science

p A s = Linguistics (undeclared)
(0]
= use when I have to (7%) = Math
m spreadsheets and powerpoint m None/Undecided
(36%) j
m other math tools (20%) m Physics

m Political Science
m Class year

= Second (50%) ® Russian
® Third or more (50%)

What you hope to learn

m Do I enjoy CS enough to m data structures
minor in it?
m more computing ability.

m the logic behind code
m enough to be comfortable

m Everything that the course and to enjoy computer
has to offer. science

m how to process data with m Java syntax
code.

m more basics.
m Java/Master a programming
language

+
Concerns

m ability to grasp some of the m Ability to comprehend the
abstract concepts code.

m Workload. m None.
m] didn't take discrete math. = Learning the correct syntax
m [am worried about what I m Real world applications.

forgot. m enough resources beyond the
m time management lecture.

m staying motivated
m transitioning from Python
m difficulty.

T ..
Prerequisites

m CMSC 110 or 105
m Motivation
m Ability and willingness to read.

m Willingness to try...

...then
fail...

...then try again.

CSC220 Introduction

+
Expectations

m What can you expect from me? m What do I expect from you?

= challenging assignments m participation, questions, and

= guidance answers

= knowledge = confusion.

= willingness to help = preparedness

m work completed and
submitted on time

m feedback

m willingness to take your
feedback seriously

==

My Course Goals for you

m Preparedness for continued study in Computer Science
m Practical knowledge of programming Java.
m Understanding of standard Data Structures

m Understanding of how standard Data Structures fit into the
Java API

What will be covered

m Java fundamentals

m Lists & Java Collections Framework
m ArrayLists, Linked Lists

m Algorithm Efficiency

m Stacks & Queues

m Recursion

m Trees

m Sets & Hash Tables

m Sorting Algorithms

m Graphs

Review

/**
* Bare Bones Application
*/
public class JavaApplication {

/**
* this program prints the arguments
* entered at the command line.
* @param args - the arguments typed
* on the command line
*/
public static void main(String[] args) {
System.out.println("Arguments entered:");
for(int 1 = @; 1 < args.length; ++1) {
System.out.println("\t" + args[i]);
}

+
Primitive Data Types

Display 1.2 Primitive Types

boolean true or false I byte not applicable
char single character 2 bytes all Unicode characters
(Unicode)
byte integer | byte —128 to 127
short integer 2 bytes —32768 10 32767
int integer L bytes —2147483648 to
2147483647
long integer 8 bytes —9223372036854775808 to
9223372036854775807
float floating-point 4 bytes —3.40282347 X 10*3% to
number —1.402398 46 X 10743
double floating-point 8 bytes +1.76769313486231570 X 1073°® to

number +14.940656458 41246544 X 10 324

==

Literals and Assignment

boolean result = true;
char capitalC = 'C’;

byte b = 100;
short s = 10000;
int 1 = 100000;

double d1 = 123.4;
float f1 = 123.4f;

// The number 26, in decimal
int decVal = 26;

// The number 26, in
hexadecimal
int hexVal = 0x1a;

// The number 26, in binary
int binVal = 0b11010;

==
Character and String Literals

m \b (backspace),

m\t (tab),

m \n (line feed),

m \f (form feed),

m \r (carriage return),
m \" (double quote),

m \' (single quote),

m \\ (backslash).

m null: used as a value for any reference type (not for
primitive types)

+
Type Casting and Constants

mintx =05; m static final int MIN = 0O;
m floaty = 4.7; m static final char END ='e';
m X = (int) y;

my *x;// gets 23.5

m (int) y +x;// gets 9

+
Storage model

m Simple types
m basic data types
m Always have a value

m Reference types
m Are always Objects
m can be null
m must be instantiated

m Wrappers exist for basic data types (Integer, Float, etc.)

+
Reading for today

m A.8 Arrays (questions?)
m A.9 I/0 using JOptionPane (questions?)
m A.10 I/O Using Streams and the Scanner Class

m A.11 Catching Exceptions

+
Arrays

m fixed size
m multiple things of the same type
m passed by reference by default
m Library methods for copying values
m "Grow" an array using Arrays.copyOf:
m int[] scores = {1,2,3,4};
m int[] tempScores = Arrays.copyOf(scores, 2 * scores.length);
m scores = tempScores;
m Copy values using System.arrayCopy:

m System.arraycopy(source, sourcePos, destination, destPos,
numElements);

+
Arrays

int[] scores = new int[5]; // An array

scores = —

int[]

[0]
[1]
[2]
[3]
[4]

IS0

+
Array of Strings

String[] names = {"Sally", "Ji11", "Hal"™, "Rick"};

String
RGeS = value = "Sally"
String[]
[0] 1] String
'—/’-'——’ -
(1] —]
[2] i
[3] -—-\\\\\ value = "Ji11"
\\‘
String
value = "Hal"
String
value = "Rick"

+
2-D Array

m double[][] matrix = new double[5][10];

(el [1] [2] [3]1 [4] (5] [e] [7] [8] [9]

matrix[0] = Ek.

N
matrix[1] = E_’ \matrix[@] [9]
matrix[2] = E-L.
matrix[3] = EL.
matrix[4] = E—¥> // matrix[4][9]

Ragged Array

m int[][] pascal = new int[5][]; // make a ragged array with 5
YOWS

m pascal[0] = new int[1]; // make the first row have 1 column;
m pascal[l] = new int[2]; // make the second row have 2 cols;

m Or, in a loop
m for (inti=0;1i < pascal.length; ++1) {
m pascal[i] = new int[i+1];

=}

pascal

pascal = E\>

what is the value of:
* pascal[2][0];
* pascal[4][2];

int[]

(o] | 1
int[]
[0] i
[1] !
int[]1[]
(o] int[]
[1] _—’—j /'—‘
(2] — [0] 1
[3] — | (1] ¢
[4] — [2] 1
o~
int[]
[0] 1
[1] 3
[2] 3
[3] !
int[]
[0] il
(1] 4
[2] 6
[3] 4
(4] 1

+
Arrays of Objects

+
I/0: JOptionPane

String answer =
JOptionPane.showInputDialog("Enter number of students™);

int numStu = Integer.parselnt(answer);

String answer =
JOptionPane.showInputDialog("What 1is 13/7");

float numStu = Float.parseFloat(answer);

JOptionPane choices

String[] choices = {"insert", "delete", "add", "display"};
int selection =
JOptionPane.
showOptionDialog(null,
"Select an operation”,
"Operation menu",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE, null,
choices, choices[@]);

System.out.println("You chose " + choices[selection]);

+
I/0O Streams

m InputStreams: = Managable Input:
m System.in m Scanner
m StreamTokenizer(advanced)

m OutputStreams: = Managable Output

m System.out m PrintWriter

m System.err
m Objects related to streams:
m String
m File
m Reader (input)
m Writer (output)

+
Scanner Examples

Scanner sysIn = new Scanner(System.in);
Scanner fileIn = new Scanner(new File("zips.txt"));
Scanner stringIn = new Scanner("here is some text.");

int X = sysIn.nextInt();
float y = fileIn.nextFloat();
String z = stringIn.next();

PrintWriter Example

PrintWriter fileOut =
new PrintWriter(new FileWriter("testFile.txt"));

fileOut.println("Hello, File");

Catching Exceptions

try {
// Statements that may throw an exception

} catch (FileNotFoundException fnfex) {
fnfex.printStackTrace(); // Display stack trace.

} catch (IOException iocex) { // exception relating to input and output
ioex.printStackTrace(); // Display stack trace.

}

